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We show that in the limit p ~ 0% N ~  0% a = p / N ~  0 the limit free energy of 
the Hopfield model equals in probability the Curie-Weiss free energy. We prove 
also that the free energy of the Hopfield model is self-averaging for any finite ~. 

KEY W O R D S :  Free energy; overlaps; self-averaging. 

1. I N T R O D U C T I O N  

Consider the model of the form (the Hopfield model (1~4)) 

N 

I IN: -�89 Z J~sisj (1.1) 

where 

J,j=~ , j 
/ t= l  

and $1,..., SN a r e  Ising spins S i=  +1 and ~ are independent random 
variables. This model, which was proposed as a model of associative 
memory in the neural network theory, (7'12) has many features of the 
spin-glass model with very interesting properties (see ref. 5 and references 
therein). The most interesting case is when the number of random vectors 
is proportional to N: 

P ~ > 0  (N-, oo) (1.2) 
N 

1 Institute of Low Temperature Physics and Engineering, Kharkov, 310164, Ukraine. 
2 Department of Mathematics, University of Rome "La Sapienza," 00185 Rome, Italy. 

113 

0022-4715/93/0700-0113507.00/0 �9 1993 Plenum Publishing Corporation 



114 Sheherbina and Tirozzi 

in this case the model has a spin-glass phase which disturbs the retrieval 
property. (12) While many physics papers are devoted to the analysis of the 
Hopfield model in the case (1.2) (see, e.g., ref. 5), unfortunately, few of 
them are rigorous mathematically. The main part of the rigorous results is 
concerned with the Hopfield model in the case 

P *0 ( N ~  oo) (1.3) 
N 

The case of p independent of N was studied in refs. 6-9. The case p ~ In N 
was considered in ref. 10. 

All these versions of the Hopfield model have, in the thermodynamic 
limit, a free energy which coincides in probability with that of the 
Curie-Weiss model [i.e., the model (1.1) with p = 1]. 

In the present paper we consider the free energy of the model (1.1) in 
the limit with the constraint (1.3). We hope that this will be the first step 
to obtaining an expansion in the parameter a for the free energy of the 
model (1.1). In Section 2 we give the main definitions and results, which 
are proven in Section 3; in Section 4 we give some auxiliary lemmas. 

2. D E F I N I T I O N S  A N D  R E S U L T S  

We will use other Hamiltonians besides the one defined in (1.1): 

p N 

H(7)=HN-N 1/2~ ~ 7~, ~ ~/Si (2.1) 
, u = l  i = 1  

na(~c, C)-~- a(~)  ~--2u~ 1 N i~=l~Si -Cp 

, u = l  i = 1  , u = l  

where 7 =  (71,..., ?P), e=(cl, . . . ,cP), and 7" are independent Gaussian 
random variables with zero mean and variance 1. The c ~ are some real 
numbers and e is a given parameter. E will denote the expectation with 
respect to the random variables (7, i f ,  i =  1,..., N, /~ = 1,..., p) and we will 
use the symbols ( .  } and (-}H(~) for the expectations with respect to the 
Gibbs distribution of the N-spin system generated by the Hamiltonians HN 
and H(7), respectively. 

Let us introduce also the free energy of the N-spin system: 

fN(HN)=--~ In 2 e-aHN (2.3) 
b l l v  Sl ,..-, SN 
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and the real function 

1 c 2 
f *  = - ~  In 2 cosh tic +-~ (2.4) 

We will consider also the overlap parameters, which are the typical order 
parameters of the neural networks: 

1 
~ S (2.5) r n ~ = ~  ~ i ( ~ ) ,  # = 1,..., p 

i = 1  

We will say that the function ~bN(~), ~ = ~ ,  i =  1 ..... N, # = 1,..., p, has 
the self-averaging property (s.a.) if 

lim E(q~N(~) -- E(()N(~)) 2 ---- 0 (2.6) 

The first result is as follows. 

Theorem 1. fN(HN) is s.a. 

The s.a. property of the free energy of the spin glass has been shown 
in ref. 11 and we will prove it in the case of the Hopfield model using the 
ideas of refs. 11 and 13. The main result is the following theorem. 

T h e o r e m  2. The free energy of the model (1.1) converges in 
probability to the free energy of the Curie-Weiss theory: 

lira fN(H) = min f*(c)  (2.7) 
N ~ o o  c 

under the condition (1.3). 

3. PROOFS 

Proof o[ Theorem I. Let ~ be the S-algebras generated by the sets 
(~ [ ,~"l~= 1,...,p fixed),(11,16,17) and let F~ be the conditional expectation of "~i li>~k 

FN with respect to 4 :  

rku= E ( - -~ ln ZN 

where E<~ is defined by 

(3.1) 

= Y, [ I  (3.2) 
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From the definition we have 

F~ = - ~ In ZN, 

It is also evident that 

We define also 

Then 

and 

FN+I=-E( ) N - -  ~InZN (3.3) 

~k k F~+I 
F N - -  

I N 

f u - E ( f N ) = ~[ k--~ l ~lk 

1 ~ E ~ + 2 ~  E}pk~, (3.5) E(fN--E(fN))2=-NSk=, ~" k<l 

Using the properties of the conditional expectation, we have (k < l) 

E~Pkg~,=E(E(g~k'P, I o~)) = E(~U,E(~k I ~ ) )  

But 
E( ~k [ ~) = E(F~ - F k + l  I ~)  = F~ - Flu = 0 

Thus, in order to obtain the result, it is enough to show that 

E'P~ < C 

where C is a constant not depending on k. 
Let us define the following useful Hamiltonians: 

1 
Hk = ~N ~ ~ ~ S i S j  (3.6) 

I.t i , j , i # j ; i , j # k  

1 
Rk - ~  Z ~ . ~ . c  S (3.7) ~ k ~ l ~  l 

# l # k  

fflg(t) = H k + tR k 

1 {In ZN(Hk(t))- In ZN(Hk(0))} L(t )  = 

F k if k > I 
E(FkN [ ~ ) =  N (3.4) 

F~ if k~<l 
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We have 

E{ 7*~} ~< 2E{ (jT~(1))2} 

But since f~ (0 )=  0 and 

then 

d 2 

dt--- 5 fk(t) <~ 0 

l~k I ~ H 
= _ ( 1 t~k ~ ~f~ 

Z 2 ~s~s,)o(o ~ 
Therefore 

E{ (L(1))2} ~ E{(•(1),)2} + E{ (j~k(0),)2 } 

~E{llb~12r } 

~-~-~E 2 E ~k%ll%k%[2\~ll 12/H(O)~ (3 .8 )  
Ii 12~k /~1,#2 

In order to estimate the first term on the r.h.s, of this formula let us 
use the fact that H is symmetrical with respect to all indexes and therefore 

E {(ll~12~kJkllJkl2allal2)H}:E { Z ~ h,t2,k ~ Jkh J~t2 ( SI, Sz2 ) 14} 

<~E{IIJI[2} <~ 4 + O ( 1 )  

Here we use also Lemma 4.2. Since H(0) is independent on ~ the 
second term in the r.h.s, of (3.8) can be estimated as 

~ E 2 ~l~1~12(511812)ff1(O) ~ } 
Ii, 12 

Theorem 1 is proven. 
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Proof of Theorem 2. From the result of Theorem 1 it is sufficient to 
find the limit of E(fN). By using the Bogolubov inequality, we obtain, 
calling f(Ha(7, e)) and f(H('l)) the free energy of the Hamiltonians (2.1) 
and (2.2), respectively, 

0 <~ E(f(Ha(7, c))) - E(f(H('I))) 

1 ( p  < ( 1  2 

# 1 i=1 / / H ( y ) /  

and thus, choosing the c" equal to the overlaps 

i=1 

one gets 

0 ~ E(min f(Ha(y, c ) ) )  - -  E(f(H(?))) 
e~RP 

E 1 ~ ~' #~'#~'(S,- <&}H(v))(Sj-- <Sy}u(v)) (3.9) 
"~ ~ /z=l i , y = l  H(y)  

On the other hand, from the formula of integration by parts it follows that 

1 ~ E (  L ~<S~}m~)) N3/2 7" 
#=1 i=1 

= ~ 5 ~  E i, 1 ~ < ( s , -  <si>,,~,~)(sj- <sj>,,~,~)>,,(,~ 

Inserting in (3.9) and using Schwartz's inequality, we have 

0 ~< E(min f(Ha(y, c))) - E(f(H(7))) 
cERP 

#=1 i = t  

~---<1 [-el_ La (~.)~],/~ 
2ill Nt~=l 

[ 1 #~__ L l I/2 
1 i , j = l  

(3.10) 
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The last factor in (3.10) can be written as 

| N 

Y. Ju<s,>H(~) <s:>,~(~) <~ JIJH 
i,j=l 

and can be bounded on the basis of Lemma 4.2. 
Therefore on the basis of (3.10) we get 

0 ~< E(min f(Ha(y, e))) - E(f(H(2))) <~ const(p/N) '/2 
e e R P  

Let us denote by H"(0, c) the Hamiltonian Ha(7, e) with e=0 ;  then we 
have 

0 ~< E(min f(H"(O, e))) - E(f(H(y))) 
c e  RP 

~< E(min f(H~(y, c))) - E(f(H(7))) 
c e R P  

# = 1  i = 1  

+ E 7 ~ ~ (Si>H 
/ z = l  i = 1  

Now it is easy to estimate the expressions 

E Z ~" Z ~i <s,>.o(o.c,.. 
u = l  i = 1  

(3.11) 

in the right-hand side of (3.11) in the same way as in (3.10). Then we have 
proved the following fact: 

lim E(f(H))= lira E(min f(H"(O, c))) 

It is easy to see that 

lira E(min f(H'(O, c))) 
g ~  e e R P  

~< lim E( min f(H~(O,e)))=minf*(c)=f*(c*) (3.12) 
N ~ o o  c : (el ,  0,...,0) c ~ R  

where c* is the point at which f *  gets its global minimum. Now we will 
show that 

lim E(min f(H'(O, e)))/> min f*(c) (3.13) 
N ~ o o  c ~ R P  c e R  
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To this aim we use the method developed in ref. 8. Let us note first that, 
P for finite N, f(Ha(O, e ) ) ~  ~ if Zu=I (c~) 2 ~  ~ and that therefore the 

function f(H'(O, e)) takes its minimum value at some critical point which 
satisfies the equations 

c.=i  . N ~i (Si}Ha(o,e)  
i=1 

(3.14) 

Let C be the set of all such points. Then 

E(min f(Ha(O, c))) 
c~RP 

=E(min[ - 1 s Q~= ) ]) 
\ ~ c  I_ fl-~ i~, In 2 cosh fl z 

1 /*=1 

= E ( m i n  [ 1  \c~c  [_N ~ f*(hi)-21 ~ c"cVN ~ ~:] )  
i=1 #~v i=1 

= e (min [lkc~c IN;= 12 f*(h3-~d.~ c"c~ 

~>E min ~ f*(h,)-Ildll (c'U) 2 
\ e ~ C  i=1 p = l  

(3.15) 

where hi='~#=lP {~c" and the matrix ~r is defined in Lemma 4.1. But, for 
C~ C, 

1 N 
(c'u)2~-~-N Z Jij<Si>Ha(o,e) <Sj>Ha(O,e)~ II JII 

,u=l i,j= l 

Therefore (3.15) gives 

E(min f(Ha(O, e))) >~ min/*(h)  - E1/Z(llJll 2) E m(lldl[ 2) 
e~RP h~R 

and by the use of Lemmas 4.1 and 4.2 we obtain (3.13). 

4, A U X I L I A R Y  R E S U L T S  

Lemma 4.1. Let d~, be defined by the formula 

1 N 
~#v : (1 - -  (~t~v) N t Z'=I ~ /~v  (#, v = 1 ..... p) 
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and let p/N ~ ~ >>. 0 (p, N ~ oo ), then, for any e > 0, 

Prob(l l~ ' l l  > (c~ + 2 , , /~)(1 + E)) ~< exp 4(~ + 2 , , / ~ )  

E(II s~ll ~) ~ 4~ + o(~) 

~ d'/3(2p)2/3 ] 

(~--,0) 

121 

ProoL Let us define the sequence of numbers  a ,  by the relat ions 

ao = 1 

1 
= 2 P Nn ul,...,u,,i~,...,e, 

(4.1) 

Since 

11 

we have nonzero  terms in the last sum only if for some k ~> 2, ix = il and 
/tk = #1 or ik = il a n d / l k + l  = #l .  In addit ion,  all the terms in this sums are 
positive and therefore if we take into account  some of them more  than  once 
the sum will increase. So for n/> 3 

n-2  1 

k ~ 0 / j 2 u  r r 5~- ,u 3 
~'~il ~ i l  \ f//2/11 ~t l  ~ t /  t )#3/11 

~- = i l  "~il ~ */~2/~3 =i l  = i l  ~ */Zl/ll* 

( a . _  2 + a,,_ 1 ) "~ E Tr(s~r k + Tr  d ~-  k -  2 
<< ~ 1 1 d~+l) 

k ~ 0  

(4.2) 

But since for l, k ~> 1, 

E @ l T r  sC~Tr s r  

lk 
<~p2N2 ~ E(?mU'z(dk g ~ g ~ E ( d t -  1)~2m ) ""~Jl z J l  " 1)#2r ZJl  ~Jl x 

/zl r v2,/z2 ~/~1, JI 

lk 
<~ -fi-~ a t + e -1 (4.3) 
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on the basis of (4.2) we have 

n 2 n - - i  

an <~ O~ ~-. a k a n  - - k -  2 "q'- O~ 2 a k a n - k - 1  
k = O  k = l  

n n 3 

+ -~(an_2+an_l)+-~-7(a,,_2+a,,_3) 

-=c~ ~ aka~_k_2+e ~ aka~_k_l+a~_l ~ao+ 
k = l  k ~ 3  

n n3 '~ -3 (~a2 n3 
+ a ~ _ 2 ( a a o + ~ + ~ ) + a n  + - ~ )  (4.4) 

and if n3/N 2 < ~%/2 
that ao = 1, al = O, a2 = a, we get from (4.4) 

[ that  is, n < (o~2N2g/2)l/3], then taking into account 

n- -2  n - -2  

Cln ~ O~ 2 a k an  - k 2+~ ~ a k an  - k 1 
k=l k=3 

+ (a,_tao+an_2ao+a~_3a2)o~(l+~) (4.5) 

Now let us define the sequence a* by the initial conditions 

a * = l ,  a * = 0 ,  a* =c~(1 +~)  (4.6) 

and the recurrence formula 

a* =~(1 +e )  * * * * (4.7) akgln- -k  2 -~ C l k a n - k  1 
0 k = l  

Since from the initial conditions (4.6) it follows that 

ao,1,2 ~< a~,1,2 

then on the basis of (4.5) and (4.7) by induction it is easy to obtain for 
n < (a2N2e/2) ~/3 that 

an ~< a* (4.8) 

On the other hand, if we define ~o(x) as 

~o(x)= ~ a*x ~ 
n = 0  

(4.9) 
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then from formulas (4.6) and (4.7) it follows that ~o(x) satisfies the equation 

qo(x) = c~(1 + a)(x + x 2) ~p(x) 2 - xc~(1 + 8) (p(x) + 1 

by resolving the quadratic equation for ~0(x) and choosing the minus sign 
in front of the square root in order to satisfy the condition q)(0)= a~ = 1, 
we get 

e(l +e)x+ 1- {[e(1 +e)x+ 112-4~(1 + e ) ( x + x 2 ) }  u2 
r  - 

2~(1 + ~)(x + x 2) 

since the singularity in x = 0 can be removed, this function is analytic for 
0 ~< x < {c~(1 + e) + 2[-~(1 + e)] 1/2} -1, then it is uniformly bounded in this 
region and we get 

q)(x) = ~ a'x" 
n = 0  

( ) ~<q) ~(1+e)+2[c~(1+~)]1/2  

2 +  [c~(1 + e ) ]  1/2 
<2  

- 1 + [~ (1  + e ) ]  1/2 

and since a* ~>0, then we get, for n <  (~N2~/2) 1/3, 

a* ~< 2{~(1 + e) + 2[-~(1 + ~)31/2 }n (4.10) 

But on the other hand 

pa. >~ E( [Id[[ ~) = f 2" dP(2) 

>~ (~ + 2 xf~)n (1 + e)" P((~ + 2 xf~)(1 + e)) (4.11) 

where P ( 2 ) =  Prob(Hd[I >2) .  Therefore (4.10) and (4.1t) give 

Prob(ll~'l[ > (c~+2 x/~)(1 +e) )  
/'~(1 + e) + 21-~(1 + ~,)]l/2x~ (~x2N2`s/2)l/3 

~< 2p 

,  4J3(2 p)2j3] 
~<exp( ~ + 2 ~ - ) /  

E(lldll2) ~< 4~ + o(~) (~--, 0) 
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Lemma 4.2. If Jij is defined by the formula (1.1) and p / N ~  ~ > 0 

(N, p ~ oo ), then 

prob(llJl[ > (1 + x/~) 2 + ~) ~< exp[ --,/~I']4/3(2N) 2/3 ] 

where J / a n d  q depend only on e. 

ProoL Lemma 4.2 follows from Lemma 4.1 if we observe that 

J = c~I + ~z~ 7 

where ~7 is of the same form as sur with/3 = N and N = p and 

= p l ~  = 11~ 

Since ]lc~I+ ~s?ll ~< ~ + ~ Ildll, we have 

Prob(llcd+ ~s]ll ~< ~ + ~(~ + 2~1/2)( 1 + g)) 

>/Prob(ll~711 ~< (~ + 2~1/~)(1 + ~)) 

= 1 - Prob(l ldl l  >/(~ + 2~1/2)(1 + ~)) (4.12) 

On the other hand 

Prob( II~I+ ~711 ~< ~ + ~(~ + 2~1/2)(1 + e)) 

= 1 - Prob(lhcd + c~7]l ~> c~ + ~(~ + 2~m)(1 + e)) (4.13) 

Therefore from (4.12) and (4.13) we obtain 

Prob(H~I+ ~7[I ~> ~ + ~(~ + 2~1/2)(1 + e)) 

~< Prob( ll~Tll >_- (~ + 2~m)(1 + ~)) 

~exp  I ~1/284/3(2/0)2/3 l ~ _ ~ j  

= e x p  [ -  N/~8-4/3(2N)2/3] 
4(1 + 2 .,j~) 3 

Finally, if t/=~(1 + 2  xf~), then 

F ,/~.4/3(2N)~/3 l 
Prob(]lJI] >/(1 + ~ ) 2  + q) ~< exp / - L 4(1 + 2 ] 
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R e m a r k .  We have formulated L e m m a  4.2 for e > 0, but  since J is the 
sum o f p  projectors, then IlJII is an increasing function of c~ and in the case 
p / N ~  0 we can use, e.g., the inequality 

Prob(  ]lJll > 2) ~< e x p ( -  d g N  2/3) 

where d / d o e s  not  depend on N, p and since IIJII ~ P, we have 

E(IIJII 2) = f o  22 dP(2) ~< 4 +  ;2 p 22 dP(2) 

~< 4 + p2 exp( - ~ ( N  2/3) 

Note  A d d e d .  When  this paper  was finished we received a preprint  
by H. Koch  (13/where our  result is obtained in a different manner.  
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